电子产品散热设计深度探讨
在大型电子设备的散热领域,我们已见证了众多成熟方案的光辉岁月,这里就不一一赘述了。但随着微电子技术的日新月异,芯片正朝着更小尺寸、更快运算速度的方向迈进,而伴随而来的,是日益严峻的散热挑战。比如,英特尔3.6G奔腾4终极版处理器,其峰值运行时产生的热量竟可达115W!这无疑对芯片的散热设计提出了更为苛刻的要求。�� 芯片散热新挑战面对这样的高热挑战,设计人员必须祭出先进的散热工艺与性能卓越的散热材料,以确保芯片能在其耐热极限内稳定工作。与此同时,随着电子设备及终端产品日益追求轻薄化,从CRT电视到液晶平板,从台式电脑到笔记本,再到数字机顶盒、便携式CD等,它们的散热设计已无法沿用传统模式,因为产品的轻薄化对散热设计提出了全新的要求。�� 温度与可靠性的紧密关联统计数据揭示了一个令人警醒的事实:电子元器件的温度每升高2度,其可靠性就会下降10%;当温升达到50度时,其寿命仅为温升25度时的1/6。由此可见,温度是影响设备可靠性的关键因素。因此,我们必须从技术层面入手,限制机箱及元器件的温升,这也就是我们常说的“热设计”。�� 热设计的两大原则热设计的核心原则有二:一是减少发热量,通过选用更优的控制方式和技术(如移相控制技术、同步整流技术等),以及低功耗器件,减少发热器件数量,加大粗印制线宽度,提高电源效率等手段来实现;二是加强散热,利用传导、辐射、对流等技术将热量有效转移。�� 扁平产品的散热难题然而,对于扁平化的电子产品而言,散热设计尤为棘手。由于空间限制,无法使用更多的散热铝片和风扇,也无法采用加强冷式散热设计或对流散热方式。因此,大家纷纷将目光投向了机壳散热。机壳散热的好处显而易见:无需额外添加风扇电源,避免了因风扇带来的灰尘和噪音问题。�� 软性硅胶导热绝缘材料的妙用那么,如何才能充分利用机壳进行散热呢?这时,软性硅胶导热绝缘材料便应运而生。作为传热界面材料的一种,软性导热硅胶绝缘垫可根据发热功率器件的大小及形状进行任意裁切,其导热能力和绝缘特性均表现出色。它能够有效填充发热功率器件与散热器之间的间隙,是替代导热硅脂+云母片二元散热系统的最佳选择。�� 材料性能详解傲琪电子的这款软性导热硅胶绝缘垫的导热系数高达13W/mK(而空气的导热系数仅为0.03w/mk),抗电压击穿值在4000伏以上,满足大部分电子设备的绝缘要求。其工艺厚度从0.5mm至5mm不等(特殊要求可增至10mm),方便设计者根据PCB板及发热功率器件的位置进行选择。此外,该材料还具备阻燃防火性能(符合U.L 94V-0要求),并通过了欧盟SGS环保认证。其工作温度范围在-50℃至220℃之间,因此是极佳的导热材料。�� 特别柔软,适用广泛值得一提的是,这款材料特别柔软,专为利用缝隙传递热量的设计方案而生。它能够填充缝隙,完成发热部位与散热部位的热传递,增加导热面积。同时,它还具有减震、绝缘、密封等多重功效,完全能够满足设备小型化、超薄化的设计要求。其厚度适用范围广,特别适用于汽车、显示器、计算机和电源等电子设备行业。如果您对这款软性硅胶导热绝缘材料感兴趣,或者想进一步了解我们的产品,请随时联系我们。张先生,18656456291。我们非常欢迎贵公司索取样品进行检测,我们将免费提供样品给您试用。期待与您的合作!
电子产品结构与导热材料解决方案
在电子产品日益小型化、高度集成化的今天,热设计已成为确保产品性能稳定、延长使用寿命的关键因素。 我们都知道,电源是电子设备的“心脏”,它将其他形式的能量转换为电子设备可用的电力。而在这个过程中,由于电子元件的高密度集成,产生的热量也越来越多。如果热量不能及时散发出去,就会导致电子元件失效、材料热老化等严重问题,从而影响整个电子产品的性能和寿命。 为了应对这一挑战,傲琪电子推出了一系列创新的导热材料解决方案,旨在帮助电子产品设计师们更好地解决热设计难题。 一、导热硅胶片在电源中的应用在电源适配器中,PCB板上的MOS管、变压器等电子元器件是主要的发热源。为了提高电源内部的散热效率,傲琪电子推出了导热硅胶垫片。这种材料可以填充在发热元器件和散热器之间的缝隙中,有效地将热量传导出去。同时,它还具有绝缘、缓冲、防刺穿等多重功能,可以全方位保护PCB板的安全。 二、导热硅胶绝缘片在电源MOS管封装中的应用对于标准件如TO-220、TO-247、TO-218等MOS管封装,傲琪电子的导热硅胶绝缘片同样表现出色。它不仅可以填补MOS管和散热器之间的间隙,提高导热效率,还能确保两者之间的电气绝缘,避免因短路而引发的安全隐患。 三、导热灌封胶在电源整体热设计中的应用对于户外电源或需要高防水、密封性的电源产品,傲琪电子的导热灌封胶无疑是最佳选择。它可以完全包裹电源内部的变压器等发热元件,形成一层坚固的保护层。同时,导热灌封胶还具有良好的导热性能,可以确保热量及时散发出去。无论是局部灌封还是整体灌封,都能满足不同场景下的热设计需求。 综上所述,傲琪电子的导热材料解决方案在电子产品结构与热设计中发挥着举足轻重的作用。它们不仅提高了产品的散热效率,还确保了产品的安全性和稳定性。如果你正在为电子产品的热设计而烦恼,不妨试试傲琪电子的导热材料解决方案吧!相信它们一定会给你带来意想不到的惊喜! 如果想申请导热硅脂、导热硅胶片的样品试用,或咨询价格,欢迎联系张先生:18656456291,微信同号
导热界面材料对降低接触热阻的影响分析
随着电子设备功率密度的增加,系统的热管理变得越来越重要。导热界面材料(TIMs)在降低接触热阻、提高热量传递效率方面发挥着关键作用。本文分析了导热界面材料的工作原理及其对接触热阻的影响,并通过实验数据验证了其有效性。 一、引言在电子设备中,接触热阻(TCR)是影响散热性能的重要因素。接触热阻的存在会导致热量传递路径受阻,使得热量无法有效从发热元件传递到散热部件,进而造成局部过热和系统性能下降。为了改善这一现象,导热界面材料(TIMs)被广泛应用于电子设备中,以降低接触热阻,提高热量传递效率。二、接触热阻的成因接触热阻主要由以下几个因素导致:1. 微观不平整性:固体表面存在微观粗糙度,使得实际接触面积小于名义接触面积,导致热量传递路径受限。2. 物理分离:即使在压力作用下,两个表面之间仍可能存在气膜或液体层,形成额外的热阻。3. 氧化层和杂质:接触面可能存在的氧化物层、污染物质或焊接残留物会降低热导率。4. 接触压力:过大的接触压力可能导致材料变形,反而增加热阻。 三、导热界面材料的作用及工作原理导热界面材料主要通过填充接触界面处的空隙,增加实际接触面积,从而提高热量传递效率,降低接触热阻。这些材料具有高导热系数,能够有效替代界面处的空气,显著降低热阻。常见的导热界面材料包括导热硅脂、导热硅胶片、石墨片、铜箔以及相变材料等。以导热硅脂为例,其导热系数远高于空气,通过涂抹在两个接触面之间,可以填充微小空隙,增加实际接触面积,从而提高热量传递效率。此外,导热硅脂还具有一定的弹性和耐高低温性能,能够适应温度变化引起的热膨胀和收缩,保持稳定的接触效果。· 导热硅脂:具有高导热系数和一定的流动性,能够填充微小空隙,提高热量传递效率。· 导热硅胶片:柔软且具有一定的弹性,能够适应接触面的不平整性,保持稳定的接触效果。· 石墨片:具有极高的导热系数和较低的密度,适用于需要高效散热且重量要求严格的场合。· 铜箔:具有良好的导电和导热性能,适用于需要同时考虑电磁屏蔽和散热的场合。 四、实验验证与分析为了验证导热界面材料对降低接触热阻的影响,本文进行了如下实验:1. 实验设置:选取两个相同的发热元件,分别涂抹导热硅脂和未涂抹导热硅脂,然后将其与散热片紧密接触。通过测量发热元件的温度变化,评估热量传递效率。2. 实验结果:实验结果显示,涂抹导热硅脂的发热元件温度明显低于未涂抹导热硅脂的发热元件。这表明导热硅脂有效降低了接触热阻,提高了热量传递效率。3. 数据分析:通过对比不同导热材料下的接触热阻值,发现导热硅脂的接触热阻最低,其次是导热硅胶片和石墨片。这进一步验证了界面导热材料在降低接触热阻方面的有效性。在实验中,我们对比了市面上的几种导热硅脂及导热硅胶片,通过样品申请测试对比,最终选定了合肥傲琪电子的产品。合肥傲琪电子的产品特点:· 高导热性能:合肥傲琪的导热材料具有高导热系数,能够有效降低接触热阻,提高热量传递效率。· 稳定可靠:产品经过严格的质量控制,具有优异的耐高低温性能和稳定性,能够适应各种恶劣环境。· 定制化服务:公司提供个性化定制服务,能够根据客户需求提供最适合的导热解决方案。· 性价比高 五、结论与展望本文分析了导热界面材料的工作原理及其对接触热阻的影响,并通过实验数据验证了其有效性。实验结果表明,导热界面材料能够显著降低接触热阻,提高热量传递效率。未来,随着电子设备的不断小型化和功率密度的不断提高,导热界面材料将发挥更加重要的作用。我们也期待更多的创新和应用,共同推动电子设备散热技术的发展。
石墨铜散热片
一、产品介绍 石墨铜散热片是傲琪电子自主研发具有知识产权生产与销售为一体的一种先进复合材料,其具有双重高散热和导热性同时具有电磁屏蔽作用,减少现代化电子产品产生的电磁波对人体的伤害。石墨铜散热片采用石墨基材与铜基材复合压延制作而成,利用石墨基材和铜基材同时具有高导热性能达到双重散热效果。同时利用铜基材有电磁屏蔽作用对电子元器件产生的电磁波进行屏蔽,从而减少了电磁波对生活环境造成的伤害。 石墨铜散热片,它是主要由铜基材和石墨基材组合而成,亦可反复叠加压延控制其厚度增加热扩散面积从而达到散热的最佳效果; 石墨铜散热片具有良好的柔韧性,易加工性;铜基材具有电磁屏蔽和吸收,以保护敏感的电子零件;产品符合RoHS标准,UL94V0阻燃等级;使用环境-40~180°C;可模切成定制的形状;超强热扩散,厚度范围0.017~3.0mm,环保,上下均绝缘,单面背胶一贴即可,便于操作。 二、产品结构图与基材 三、产品组成基材详细介绍1、石墨铜散热片由两种基材和三种辅基材组成:石墨基材、铜基材、绝缘层、热熔胶、离型纸。 2、石墨基材介绍: 高导热石墨基材也称石墨散热片,是一种全新的高导热散热材料,其具有独特的晶粒取向,沿两个(水平和垂直)方向均匀导热,水平方向热导率有500-1750 W/m-K 范围内的超高导热性能,片层状结构可很好地适应任何表面,屏蔽热源与组件的同时改进消费类电子产品的性能。其分子结构示意图如下: 石墨散热片的化学成分主要是单一的碳(C)元素,是一种自然元素矿物。薄膜高分子化合物可以通过化学方法高温(1300~2800 C°)高压下得到石墨化薄膜,因为碳元素是非金属元素,但却有金属材料的导电、导热性能,还具有象有机塑料一样的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等一些良好的工艺性能,因此,在电子、通信、照明、航空及国防军工等许多领域都得到了广泛的应用。 石墨散热片的散热原理:典型的热学管理系统是由外部冷却装置,散热器和热力截面组成。而散热片的重要功能是创造出最大的有效表面积,在这个表面上热力被转移并有外界冷却媒介带走。石墨散热片就是通过将热量均匀的分布在二维平面从而有效的将热量转移,保证组件在所承受的温度下工作。石墨散热片热扩散示意图如下: 结论:由石墨散热片热扩散示意图不难看出石墨基材只有在水平方向热传导性才能发挥出极高的特性,原因在于其分子网状结构决定其导热方向性能。然而垂直方向因分子是层层叠加大大影响了其垂直热传导特性。 3.铜基材介绍: 随着电子元器件以及产品向高集成度、高运算领域的发展,耗散功率随之倍增,散热日益成为一个亟待解决的难题。一直以来,铜基材在传统散热器被广泛应用于电子元器件和产品散热领域。铜基材具有低表面氧气特性,可以附着与各种不同基材,如金属,绝缘材料等,拥有较宽的温度使用范围。同时具有电磁屏蔽作用,其热传导率达380~400W/m.K,因铜基材为面心立方晶体结构紧密排列致使整体任意方向均衡热传导性。如下图铜晶体结构图: 结论:石墨铜散热片中使用的铜基材具有优越的热传导性能,同时具有EMI屏蔽作用,因其为立方结晶体决定了水平与垂直各方向均温进行热传导,然而水平方向却不及石墨基材。 4.石墨散热片的散热原理: 典型的热学管理系统是由外部冷却装置,散热器和热力截面组成。而散热片的重要功能是创造出最大的有效表面积,在这个表面上热力被转移并有外界冷却媒介带走。石墨铜散热片就是利用铜基材具有均温高效热传导特性把热量均衡的传导到石墨基材再通过石墨超高热传导特征将热量均匀的分布在二维平面及时有效的将热量再次转移,达到双重热传导与散热特效,从而降低元器件温度,提高稳定性和使用寿命,保证发热元器件在所承受的温度下高效工作。 四、石墨铜散热片技术参数: 参数 Parameter基材 石墨基材铜基材厚度 Thickness (mm)0.012~1.0mm±0.005~0.050.018~0.1mm±0.005~0.05导热系数 (W/m.K)Thermal conductuvutyX,Y direction1750~500400~380Z direction25~5密 度 Density (g/cm³)2.2~1.28.92工作温度 Heat resistance (ºC)-50~600-50~400热扩散系数Thermal diffusivity (cm²/s)10~70.78~0.64导电系数Electric Conductivity (S/cm)200001.72×10-8Ω·m弯曲测试Bending test(times) (R5/180º)>10000>20000比热率Specific Heat (50ºC) (J/gK)1.00.39硬度Hardness ( ShoreA)80110防火等级UL Certify (UL-94)V-0V-0扩张强度 (MPa)Extensional strengthX,Y direction45105Z direction0.1 五、石墨铜应用领域 石墨铜散热片通过在减轻器件重量的情况下提供更优异的热传导散热性能,能有效的解决发热电子元器件的热设计难题,广泛的应用于智能手机、平板电脑、便捷电子设备、 PDP、LCDTV 、Notebook PC、UMPC、Flat Panel Display 、MPU 、Projector 、Power Supply、LED 等电子产品。目前石墨铜散热片同时应用于通讯工业、医疗设备、SONY/DELL/Samsung 笔记本、Samsung PDP、PC 内存条,LED 基板、电子、通信、照明、航空及国防军工等。 六、各种材料热传导系数比较图纸定制案例
PCB板的导热材料选择
一、金属材料
铜:铜是PCB板中常用的导热材料之一,因其具有良好的导电性和导热性,且机械强度高。在PCB设计中,铜常被用作线路层和散热层,通过增加铜箔的厚度或采用多层铜箔结构来提高导热性能。
铝:铝也是一种优良的导热材料,成本相对较低。在PCB板中,铝常被用作金属基板,通过铝基板的散热特性来提高整个PCB板的散热能力。
其他金属:如钨、钴等金属材料也具有良好的导热性能,但成本较高,通常用于特殊需求的PCB设计中。
二、非金属材料
硅胶:硅胶是一种具有良好导热性和绝缘性能的非金属材料,常用于PCB板的散热填充和导热粘接。硅胶的成本相对较低,且易于加工和成型。
石墨烯:石墨烯是一种新型的导热材料,具有极高的导热系数和优良的机械性能。虽然成本较高,但其在PCB板的高导热领域具有巨大的应用潜力。
碳化硅:碳化硅材料的热导率非常高,是高温高强度环境下电路板设计的理想选择。然而,其成本也相对较高,且硬度大不易加工。
三、复合材料
为了平衡导热性能、成本和其他性能要求,PCB设计中也常采用复合材料作为导热层。这些复合材料通常由金属、非金属或两者混合而成,通过特定的工艺制备而成,以满足特定的应用需求。
四、选择原则
导热性能:根据PCB板的散热需求选择合适的导热材料。导热系数越高的材料散热效果越好。
成本:在保证导热性能的前提下,尽可能选择成本较低的材料以降低制造成本。
加工性:考虑材料的加工难度和成本,选择易于加工和成型的材料。
机械强度:确保所选材料具有足够的机械强度以承受PCB板在使用过程中可能受到的机械应力。
热稳定性:在高温环境下工作的PCB板需要选择热稳定性好的导热材料。
绝缘性能:对于需要绝缘的PCB板部分,应选择具有良好绝缘性能的导热材料。
环保要求:选择符合环保要求的材料以减少对环境和人体的影响。
#导热#